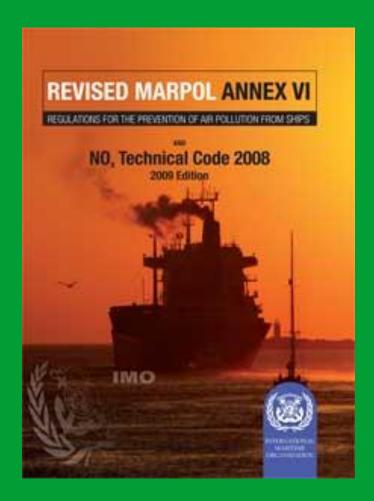
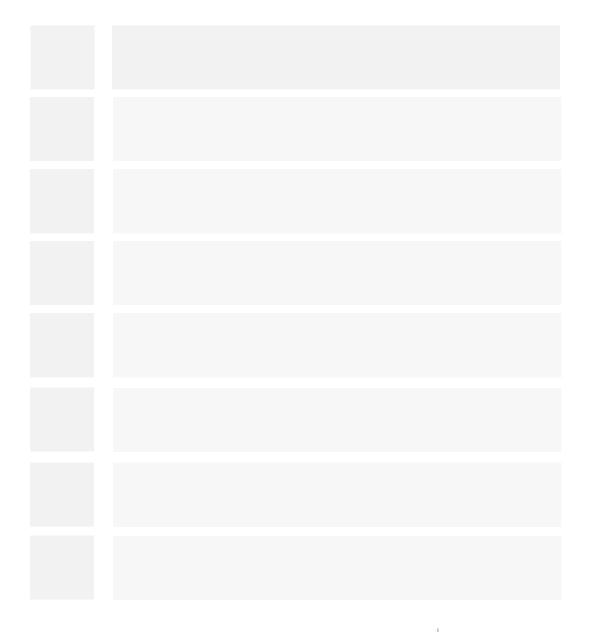


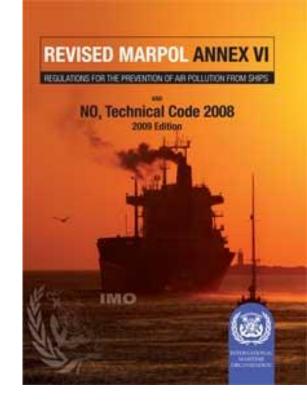
Such as airports, there are several years, Ports are currently their revolution to limit pollution and the impact on the environment




Life Is On

Confidential Property of Schneider Electric | Page 2

International Regulation IMO, MARPOL Annex 6

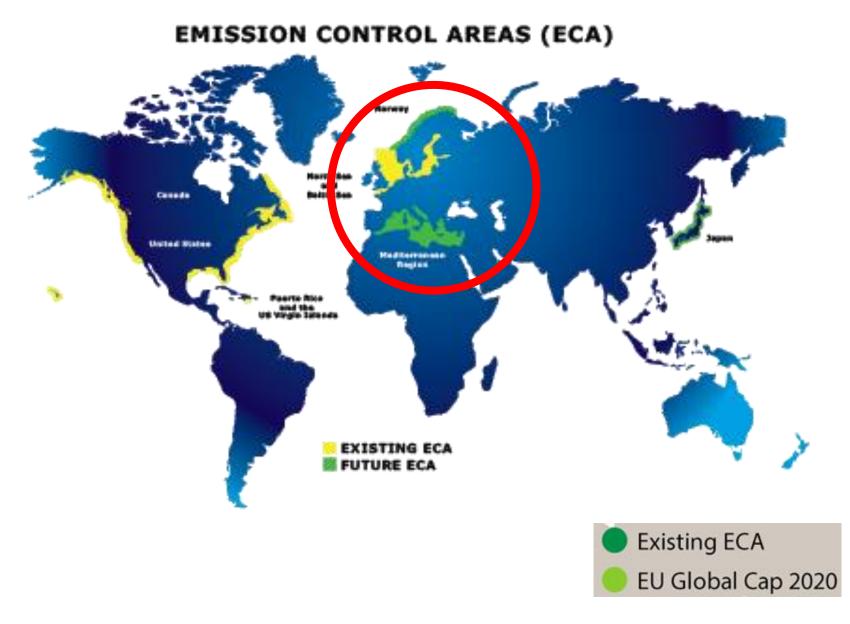

International Regulation MARPOL Annex VI

What is it?

Regulations to limit air pollution from ships including:

Limitation of NOx and SOx emissions in fuel oil of all ships

SOx Limit in Fuel (% m/m)			Average Nox Limit in Fuel (g/kWh)		
MARPOL ANNEXE VI		EU maritime fuel sulphur directive (2005/33/EC)	MARPOL ANNEXE VI		
High sea & berth	SECA	Berth	High sea & berth		
4.5%	1,5%	1,5%	11,8		
.,	1,0%	0.1%	9,6		
3,5%	0,1%	,,,,,	2,3		
	MARI ANNEX High sea & berth	MARPOL ANNEXE VI High sea & berth 4,5% 1,5% 1,0% 3,5% 0,1%	MARPOL ANNEXE VI High sea & berth 1,5% 1,0% 3,5% 0,1% EU maritime fuel sulphur directive (2005/33/EC) Berth 1,5% 0,1%		


IMO and EU encourages implementation of new technologies to cut emission: SC viewed as one

*SECA = Sulphur Emission Control Area: Baltic Sea + North sea + English Channel

Hypothesis	Emissions From Ship Referencial						
	CO2	645	g/kWh				
	Nox	13	g/kWh				
	SO2	0,2	g/kWh				
	PM	0.3	a/k\//h				

Emission generation levels by Ships in ports compared on energy source

Land-produced electricity is always less pollutant than burning bunkering fuel

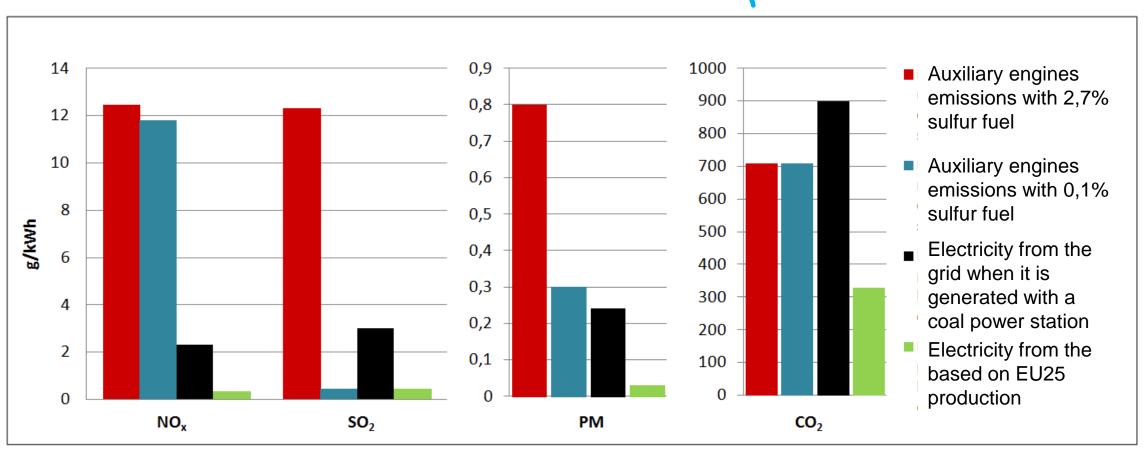


Table 1. Summary of Harbor Craft and OGV Emission Factors, Corrected for 15 Parts per Million Sulfur Content in Harbor Craft and 0.1 Percent Sulfur Content in OGVs

	NOx	VOC	CO	PM ₁₀	SO ₂	CO ₂	CH ₄	N ₂ O
Minimum Power (kW)	(g/kW-hr)	(g/kW-hr)	(g/kW-hr)	(g/kW-hr)	(g/kW-hr)	(g/kW-hr)	(g/kW-hr)	(g/kW-hr)
Harbor Craft a/								
Category 1 – Tier 1 Engines								
37 - 75	9.8	0.27	2	0.77	0.007	690	0.02	0.09
75 - 130	9.8	0.27	1.7	0.34	0.007	690	0.02	0.09
130 - 225	9.8	0.27	1.5	0.34	0.007	690	0.02	0.09
225 - 450	9.8	0.27	1.5	0.26	0.007	690	0.02	0.09
450 - 560	9.8	0.27	1.5	0.26	0.007	690	0.02	0.09
560 - 1000	9.8	0.27	1.5	0.26	0.007	690	0.02	0.09
1,000 +	9.8	0.27	5	0.26	0.007	690	0.02	0.09
Category 2 – Tier 2 Engines								
	9.8	0.5	5	0.62	0.001	690	0.02	0.09
Ocean-going Vessels								
Category 3 b/ Main Engines	13.20	0.5	1.10	0.19	0.397	646.08	0.004	0.031
All Categories Aux. Engines	13.9	0.40	1.10	0.18	0.42	690.71	0.004	0.031

Notes:

a/ Category 1 engines have a displacement less than 5 liters per cylinder (L/cyl), Category 2 engines have a displacement greater than or equal to 5 (L/cyl) and less than 30 L/cyl, and Category 3 engines have a displacement greater than or equal to 30 L/cyl.

b/ The emission factors for the Category 3 engines were based on a medium-speed diesel vessel using marine diesel oil fuel.

Source

AIR EMISSION CALCULATIONS AND METHODOLOGY

Virginia Offshore Wind Technology Advancement Project (VOWTAP)

Prepared for:

5000 Dominion Boulevard Glen Allen, VA 23060

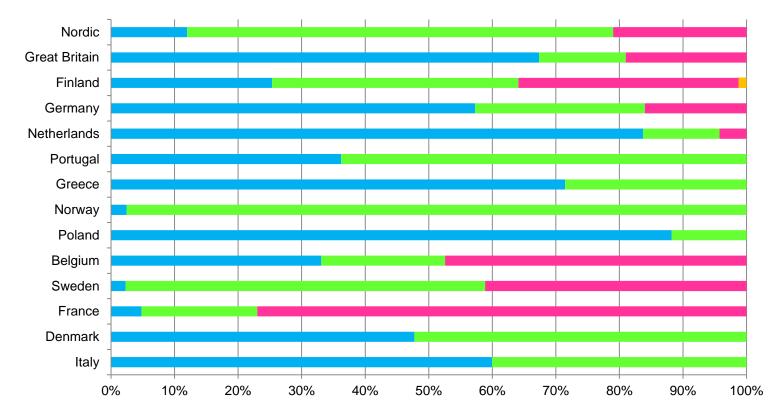
Prepared by:

Tetra Tech, Inc. 4101 Cox Road, Suite 120 Glen Allen, VA 23060

www.tetratech.com

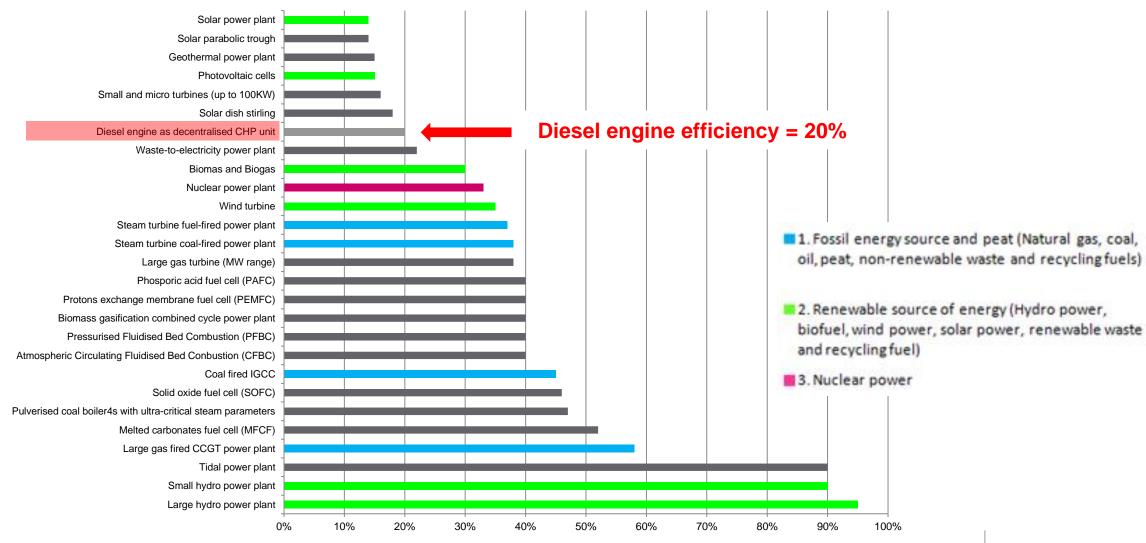
Submitted December 2013

Revised October 2014


Efficiency of Electricity production Shore Connection an attractive solution

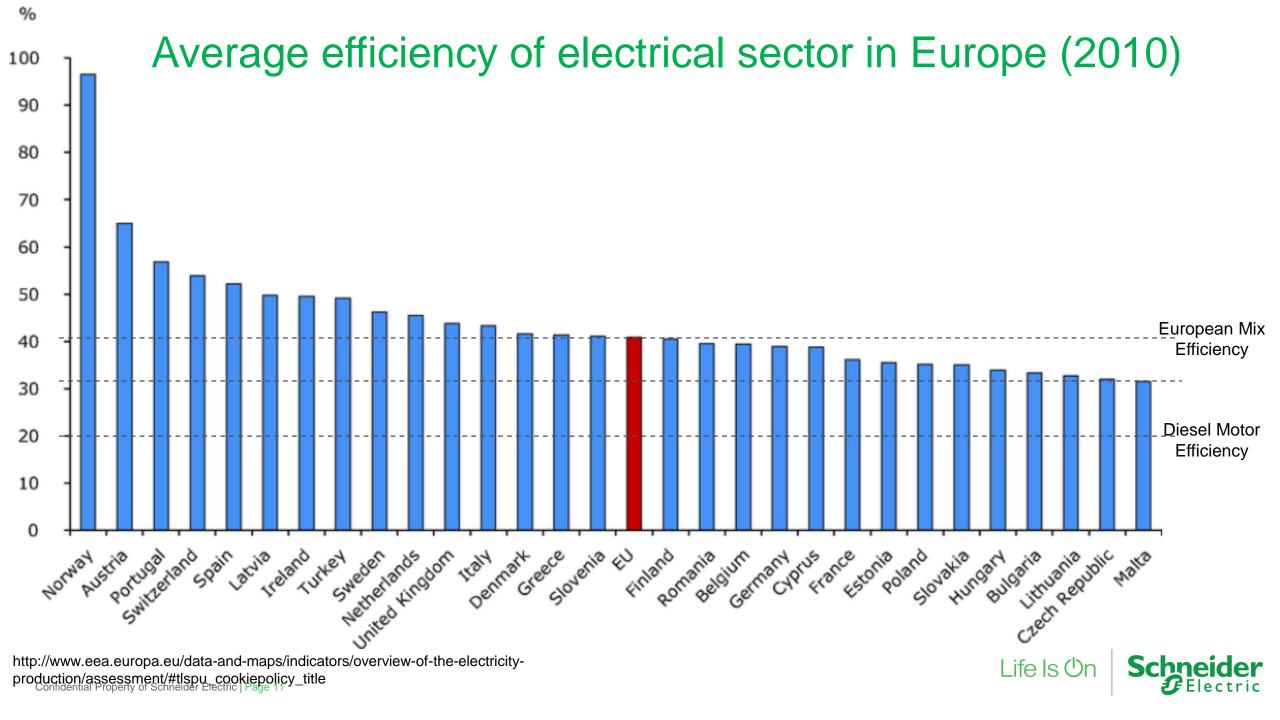
Energy Mix per country

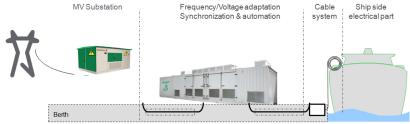
- ■1. Fossil energy source and peat (Natural gas, coal, oil, peat, non-renewable waste and recycling fuels)
- 2. Renewable source of energy (Hydro power, biofuel, wind power, solar power, renewable waste and recycling fuel)
- ■3. Nuclear power
- 4. Non Identifiable

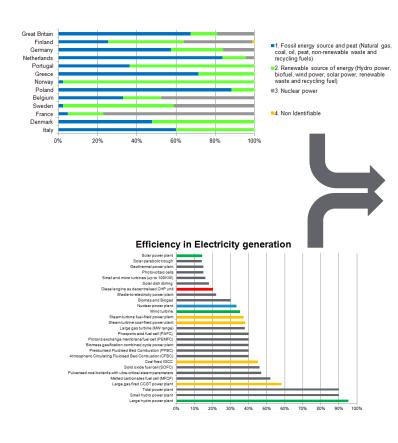

Energy Mix 2014	Italy	Nordic	Denmark	France	Sweden	Belgium	Poland	Norway	Greece	Portugal	Netherlands	Germany	Finland	Great Britain
1. Fossil energy source and peat (Natural gas, coal, oil, peat, non-renewable waste and recycling fuels)	60%	12%	48%	5%	2%	33%	88%	2%	71%	36%	84%	57%	25%	67%
2. Renewable source of energy (Hydro power, biofuel, wind power, solar power, renewable waste and recycling fuel)	40%	67%	52%	18%	57%	20%	12%	98%	29%	64%	12%	27%	39%	14%
3. Nuclear power	0%	21%	0%	77%	41%	47%	0%	0%	0%	0%	4%	16%	35%	19%
4. Non Identifiable	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	1%	0%

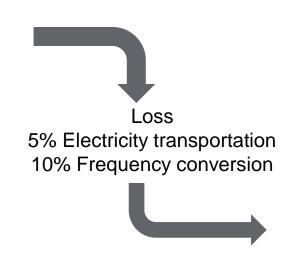
Ref : entsoe (european network of transmission system operators for electricity) 2014 Nordic = Denmark, Finland, Norway, Sweden, Estonia

How is the Efficiency in various generation technology?


Efficiency* in Electricity generation


Source: EURELECTRIC "Presentation of Resources"





What is the efficiency Energy Mix when ship is plugged to grid?

%	Energy Mix Efficiency
Belgium	38%
Denmark	32%
Finland	45%
France	40%
Germany	36%
Greece	46%
Italy	56%
Netherlands	35%
Norway	89%
Poland	45%
Portugal	48%
Sweden	55%
Great Britain	43%
Nordic	68%

	Electricity
%	Efficiency
70	delivered to
	ship
Belgium	32%
Denmark	27%
Finland	38%
France	34%
Germany	31%
Greece	39%
Italy	48%
Netherlands	30%
Norway	76%
Poland	38%
Portugal	41%
Sweden	47%
Great Britain	37%
Vordic	58%
Life Is 🖰	n Schnei

Nordic = Denmark, Finland, Norway, Sweden, Estonia

Efficiency of Electricity generate by Ship Auxiliary Engine at port compare to connection to the Grid

Electricity Grid generation

%	Electricity Efficiency delivered to ship
Denmark	27%
Italy	48%
Norway	76%

Electricity Ship generation

%	Electricity Efficiency generated by Ship
Diesel Engine	20%

Comment:

Even if the Efficiency of the Energy Mix in Denmark is the lowest, The Auxiliary Engine on board is less Efficient!

CO2, CO2, NOx, PM emission Shore Connection better for the planet

CO2 emission of Energy Mix production compare to Ship

Electricity production emission (g/kWh)

(g/kWh)	CO2 Emission
Belgium	253,61
Denmark	328,84
Finland	177,79
France	92,40
Germany	503,42
Greece	904,18
Italy	404,65
Netherlands	432,86
Norway	4,54
Poland	810,42
Portugal	505,74
Sweden	43,60
Great Britain	496,28

Source : eea.europa.eu 2015

SHIP emission (g/kWh)

CO2 emission	(g/kWh)
Emission from Auxiliary engines using 0,1% sulphur marine gas oil (MGO)*	645

^{*}Source: Feasibility Study of Cold-ironing Technology in Copenhagen FABIO BALLINI - UNIVERSITY OF GENOA, Italy 2013
CO2 emission from the 70 cruise vessels with a total of 308 calls visiting the Port of Copenhagen in the summer season of 2012 (May-October) ~ energy demand 31674 MWh

Comment:

In France, plug a ship to electricity reduce CO2 emission by 86%

NOx, SO2, PM emission compare to Ship

Nordic countries case

Production / emissions	NOx (g/kWh)	SO2 (g/kWh)	PM (g/kWh)
Emission from Auxiliary engines using 0,1% sulphur marine gas oil (MGO)*	13,2	0,2	0,3
Nordic Energy Mix	0,32	0,07	0,03
Reduction emission	98%	65%	90%

^{*} Source: Feasibility Study of Cold-ironing Technology in Copenhagen FABIO BALLINI - UNIVERSITY OF GENOA, Italy 2013 NORDIC = Denmark, Norway, Sweden, Finland and Estonia. For an Energy demand 31674 MWh/season

Comment:

In Nordic, plug a ship to electricity strongly reduce NOx, SO2 and PM emission

CO₂, NO_x, SO₂, PM annual emissions from Ship and financial impacts

Hypothesis	Emissions From Ship Referencial						
	CO2	645	g/kWh				
	Nox	13	g/kWh				
	SO2	0,2	g/kWh				
	PM	0,3	g/kWh				

One Ferry Ship 12h/day/365days Power: 3MVA

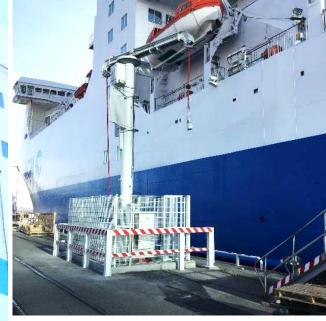
					At berth		
Result	Ship Emissions simulation				Power	3	MVA
	CO2	8475,3	Ton		Time at berth	4380	Hours
	Nox	170,82	Ton				
	SO2	2,628	Ton		HLSMGO	500 €	
	PM	3,942	Ton		Electricity	0,08 €	
	LSMGO (200g/kWh)	2628	Ton	\rightarrow	Fioul Price	1 314 000 €	
	LSMGO (250g/kWh)	3285	Ton	\rightarrow	Fioul Price	1 642 500 €	
	LSMGO (300g/kWh)	3942	Ton	\rightarrow	Fioul Price	1 971 000 €	
	Energy Consumed	13140	MWh	\rightarrow	Electricity Price	1 051 200 €	

Our references

Plug Into Green Power

Schneider Electric worldwide references

ShipYard at Port of Ancona in Italy, ShoreBoX 2MVA



OSV connection at Port of Bergen

Life Is On

Plug in to Green Power

Shore Connection Solution

Thank you for your attention

At your disposal hugues.berthet@schneider-electric.com Mobile: +33 6 08 56 54 41

