

Air pollution from ships and its impact on health

Carla Ancona

Mediterranean Shipping Conference Paris, May, 15th 2018 Italy is the first European market for cruise traffic, with 10.4 million passengers in 2017 and an average annual growth rate of 8% between 2005 and 2017.

The first seven ports (Civitavecchia, Venice, Naples, Savona, Genoa, Livorno and Bari) handle almost 80% of passengers,

Cemar Agency Network

Real-time monitoring of ships in the Adriatic (SHAPe project - IPA Adriatic). Naval routes 2-7 March 2018

Source: Marchesi Environmental Agency FVG

Air quality in Trieste (north east Italy)

Source: Marchesi Environmental Agency FVG

	A			
	Location			
Country	Italy			
Location	Civitavecchia, Metropolitan City of Rome			
Details				
Wharfs	26			
Statistics				
Annual container volume	64,387 TEU's (2014) ^[1]			
Value of cargo	15,587,776 (2014) ^[1]			
Passenger traffic	1,473,269 (2014) ^[1] 2,141,195 (2014) ^[1]			
	Website			
http://www	v.port-of-rome.org 🗗			

more than 500 cruises a year; half a dozen ferry lines carry passengers, cars, and freight to Sardinia, Sicily, and other points in the Mediterranean; economic effect of the cruise activities equal to 401.9 million euros

Epidemiological studies carried out in the Civitavecchia district showed <u>high mortality and morbidity risk for lung cancer</u>, <u>mesothelioma and respiratory diseases</u> both among workers and general population.

- Harbor workers (Bonassi 1985)
- Electric power plant workers (Forastiere 1989)
- Seamen and ship workers (Rapiti 1992)
- Respiratory diseases in children (Forastiere 1992, 1994)
- Lung cancer case-control study (Fano, 2004)

data about individual exposure to pollutants from the different sources were not available

Population

municipality registers

What is (and which was) the individual level of exposure of residents?

Is there an association between ships emissions and long-term effect on the health of residents?

dispersion model

SPRAY

dispersion model

PM10 μ g/m3 concentrations

Accumulation of heavy metals due to production activities
Dissolution of heavy metals due to damage of wastewater treatment facilities
Disposal of harmful waste materials by burial or other methods

Accumulation of heavy metals

Heavy metals

Dissolution of

narmful materials

Contamination of soil, plants and animals

Ground

Ground

water

Food chain

Biomonitoring the concentrations of metals in blood or in urine allows to assess the human contamination to environmental pollutants through all routes of exposure

Human biomonitoring Study

Antimonio (Sb) Arsenico (As)	centrale a carbone	dieta; acqua		
()	centrale a carbone	, .		
Arsenico (As)				
		centrale a carbone; porto; dieta; acqua		
Refillio (Re)	combustione olio e carbone; fumo	fumo; dieta; acqua; rifiuti pericolosi		
Cadmio (Cd)	combustione carbone e petrolio; fumo	centrale a carbone; porto; fumo		
Cobalto (Co)	combustione carbone e petrolio; traffico	dieta (integratori)		
Cromo (Cr)		centrali a carbone; porto; traffico;		
		industria galvanica; fumo; dieta		
Iridio (Ir)		traffico		
Manganese (Mn)		porto; combustione; dieta		
	combustione carbone; dieta	centrale a carbone; dieta		
Molibdeno (Mo)		centrale a carbone; acqua; dieta		
Nichel (Ni)		combustione carbone; porto; traffico; combustione; fumo; dieta; bigiotteria; detergenti		
Palladio (Pd)	traffico	traffico		
Piombo (Pb)	centrale a carbone	porto; dieta; acqua; bottiglie in pet ad alte temperature		
Platino (Pt)		traffico		
Rame (Cu)		centrale a carbone; porto; traffico		
Rodio (Rh)		Traffico		
Stagno (Sn)		combustione carbone e petrolio; consumo di prodotti in scatola		
Tallio (11)	combustione del carbone	combustione carbone		
Tungsteno (W)		combustione; cementificio; acqua		
Vanadio (V)		porto; carburanti di origine fossile; dieta		
Zinco (Zn)		combustione; traffico; dieta		

A sample of 1200 residents (age 35-69) was randomly selected from the Municipal Register's data and their residence addresses were geocoded.

Association between PM₁₀ frm the harbor and urinary concentration of heay metals

Study design – Long term effect

Residents at 01-01-1996 follow-up 31-12-2013

71.362 people (18+ years)

OUTCOME

Mortality (1996-2013)

Association between living <500 m from the harbour and mortaity

	n	HR adj	95% CI
Natural mortality (001-799)	13,687	1.03	0.96 - 1.10
Malignant cancers (140-208)	4,427	1.11	0.99 - 1.25
Stomach (151)	294	1.39	0.89 - 2.17
Colon and rectum (153-154; 159)	585	1.09	0.79 - 1.50
Liver (155-156)	291	0.99	0.63 - 1.54
Pancreas (157)	240	1.05	0.65 - 1.68
Larynx (161)	38	0.34	0.04 - 2.59
Trachea, bronchus and lung (162)	1,046	1.31	1.04 - 1.66
Pleura (163)	29	0.61	0.14 - 2.63
Bladder (188)	181	1.11	0.62 - 1.98
Kidney (189)	103	0.29	0.09 - 0.95
Brain and other parts of CNS (191-192; 225)	92	0.84	0.35 - 2.02
Lymphatic and hematopoietic tissue (200-208)	368	1.08	0.73 - 1.61
Neurological diseases (330-349)	341	1.51	1.05 - 2.18
Cardiovascular diseases (390-459)	5,354	0.97	0.88 - 1.08
Respiratory diseases (460-519)	874	0.79	0.60 - 1.04
Digestive sistem diseases (520-579)	561	1.04	0.75 - 1.43
Renal diseases (580-599)	242	0.91	0.56 - 1.50

Effect of diesel engine on lung cancer mortality

Vermeulen R et al. Exposure-Response Estimates for Diesel Engine Exhaust and Lung Cancer Mortality Based on Data from Three Occupational Cohorts. Env Heal Perspect. 2014.

Moolgavkar SH et al.. Diesel engine exhaust and lung cancer mortality: time-related factors in exposure and risk. Risk Anal. 2005.

 traffic-related air pollution may negatively affect the central nervous system and contribute to central nervous system diseases

Costa LG et al. Neurotoxicants Are in the Air: Convergence of Human, Animal, and In Vitro Studies on the Effects of Air Pollution on the Brain. Biomed Res Int. 2014

Levesque S et al. Air pollution & the brain: Subchronic diesel exhaust exposure causes neuroinflammation and elevates early markers of neurodegenerative disease. J Neuroinflammation 2011.

case-control study in Denmark found modeled NO₂ from traffic sources associated with risk of Parkinson's disease

Ritz B et al. Traffic-Related Air Pollution and Parkinson's Disease in Denmark: A Case-Control Study. Environ Health Perspect 2015.

- Ship emissions reduction (# of ships, speed, fuel)
- Verification of compliance with regulations in the use of
- fuels by all ships and boats
- Control of the fumes emitted by the chimneys of the ships and others polluting sources with LIDAR (Light Detection and Ranging),
- Replacement of trucks and cranes powered by diesel engines
- environmental control
- epidemiological surveillance

Acknowledgements

Dipartimento di Epidemiologia SSR Lazio

Carla Ancona, Chiara Antonucci, Simone Bucci, Fabio Cruciani, Morena Petrolati, Giovanna Piras, Chiara Reggiani, Chelo Salatino e Francesco Forastiere

Dipartimento di Prevenzione, ASL Roma F Augusto Pizzabiocca, Giovanni Biscotti, Sabrina Di Lorenzo, Silvia Rabbiosi e Paola Bueti

ARPA Lazio

Roberto Sozzi, Andrea Bolignano

Dipartimento Salute e Ambiente, Istituto Superiore di Sanità Alessandro Alimonti, Beatrice Bocca, Stefano Caimi, Anna Pino, Flavia Ruggieri

Dipartimento Medicina, Epidemiologia e Igiene del lavoro ed Ambientale, INAIL

Giovanna Tranfo, Enrico Paci, Daniela Pigini

Sezione di Medicina del Lavoro, Malattie Respiratorie e Tossicologia, Università di Perugia-Azienda Ospedaliera di Perugia Nicola Murgia, Maura Ambrogi, Elisa Casavecchia, Renza Piccinini.

No CoI

c.ancona@deplazio.it

www.deplazio.net

Civitavecchia

Civitavecchia Rome

Modello di dispersione

PM₁₀

Centrale a carbone

Modello di dispersione degli inquinanti – Centrale Torrevaldaliga Nord – PM₁₀

NO_x

Traffico (cars+trucks)

Modello di dispersione degli inquinanti – Traffico stradale – NOx $\mu g/m^3$ PM₁₀ Camini

Modello di dispersione degli inquinanti **Camini**: $- PM_{10} \mu g/m^3$